Entradas

3.7.-Potencia

Imagen
Se define la potencia como la rapidez con la que se realiza un trabajo. Su expresión viene dada por: P=Wt Donde: P: Potencia desarrollada por la fuerza que realiza el trabajo. Su unidad de medida en el Sistema Internacional es el Vatio (W) W: Trabajo. Su unidad de medida en el Sistema Internacional es el Julio (J) t: Tiempo durante el cual se desarrolla el trabajo. Su unidad de medida en el Sistema Internacional es el segundo (s). Aunque existen otras unidades de medida de la potencia, el sistema internacional mide la potencia en vatios (W) es posible relacionar la potencia mecánica que impulsa un móvil y su velocidad de desplazamiento. En este apartado sólo vamos a estudiar el caso simple en el que el objeto se mueve según un movimiento rectilíneo uniforme m.r.u. A partir de la definición de potencia, podemos relacionar la potencia desarrollada por una fuerza constante y la velocidad del cuerpo sobre el que actúa. P=Wt=F⋅Δrt=FΔrt=1F⋅v Tipos de potencia Potencia mecá

3.6.-Trabajo

Imagen
El trabajo es una magnitud física escalar que se representa con la letra W (del inglés Work) y se expresa en unidades de energía, esto es en julios o joules (J) en el Sistema Internacional de Unidades. Por lo tanto. El trabajo es igual al producto de la fuerza por la distancia y por el coseno del ángulo que existe entre la dirección de la fuerza y la dirección que recorre el punto o el objeto que se mueve. Puede calcularse el trabajo que una fuerza realiza a lo largo de una trayectoria curvilínea general. Para ello basta saber que el trabajo que la fuerza realiza en un elemento diferencial ds de la trayectoria, vale: Entonces, para obtener el trabajo a lo largo de toda la trayectoria bastará con integrar a lo largo de la misma entre los puntos inicial y final de la curva. Pero hay que tener en cuenta también, que la dirección de la fuerza puede o no coincidir con la dirección sobre la que se está moviendo el cuerpo. En caso de no coincidir, hay que tener en cuenta el ángulo que s

3.5.-Energía Mecánica

Imagen
Llamamos energía mecánica de un cuerpo a la suma de la energía cinética Ec y potencial Ep que posee: Em=Ec+Ep Es importante señalar que la energía potencial, de modo general, cuenta con distintas contribuciones. En este tema nos centraremos en la energía potencial gravitatoria y la energía potencial elástica. Ep=Epg+Epe Principio de Conservación de la Energía Mecánica La energía mecánica de un cuerpo se mantiene constante cuando todas las fuerzas que actúan sobre él son conservativas. Es probable que en numerosas ocasiones hayas oido decir que "la energía ni se crea ni se destruye, solo se transforma". En realidad, tal afirmación es uno de los principios más importantes de la Física y se denomina Principio de Conservación de la Energía. Vamos a particularizarlo para el caso de la energía mecánica. Para entender mejor este concepto vamos a ilustrarlo con un ejemplo. Imagina una pelota colgada del techo que cae sobre un muelle. Según el principio de conservación de l

3.4.-Energía Cinética

Imagen
La energía cinética es la energía que un objeto tiene debido a su movimiento. Si queremos acelerar un objeto debemos aplicar una fuerza. Para hacerlo necesitamos realizar un trabajo. Como resultado, transferimos energía al objeto, y este se moverá con una nueva velocidad constante. A la energía transferida la conocemos como energía cinética, y depende de la masa y la velocidad alcanzada. La energía cinética puede transferirse entre objetos y transformarse en otros tipos de energía. Por ejemplo, una ardilla voladora podría chocar con una ardilla inmóvil. Tras la colisión, parte de la energía cinética inicial de la ardilla voladora se habrá transferido a la ardilla en reposo o se habrá transformado en otra forma de energía. Para calcular la energía cinética, seguimos el razonamiento descrito anteriormente y comenzamos por encontrar el trabajo realizado, W, por una fuerza, F, en un ejemplo sencillo. Considera una caja de masa m que es empujada a lo largo de una distancia d por una fue

3.3.-Energía Potencial

Imagen
La Energía Potencial es la capacidad que tiene un cuerpo para realizar un trabajo de acuerdo a la configuración que ostente en el sistema de cuerpos que ejercen fuerzas entre sí, es decir, la energía potencial es la energía que es capaz de generar un trabajo como consecuencia de la posición de un cuerpo. A la misma puede considerársela como la energía almacenada en el sistema o la medida de un trabajo que el sistema puede ofrecer. Entonces, se supone que cuando un cuerpo se moviliza con relación a un cierto nivel de referencia estará en condiciones de acumular energía. Cuando un cuerpo es levantado a una determinada altura adquiere lo que se conoce como energía potencial gravitacional; una vez que cae el cuerpo esa energía potencial se transformará de inmediato en energía cinética. Por ejemplo, los carros de una montaña rusa logran la energía potencial gravitacional en la parte más alta de su recorrido, una vez que comienzan a descender a la anterior energía se la convierte en ciné
NOMBRE.-Kevin Arath Quintero Vélez GRUPO.- 4* "CE" ESPECIALIDAD.-Electrónica PROFESORA.-Indira Yuridia Hernandez Solano TEMARIO 1.1.-Ramas De La Fisica 1.2.-Magnitudes Fundamentales, Derivadas, Escalares y Vectoriales 1.3.-Conversión De Unidades 1.4.-Vectores (Distancia y Desplazamiento) 2.1.-Velocidad y Rapidez 2.2.-Acleración 2.3.-MRU 2.4.-MRUA 2.5.-Tiro Vertical 2.6.-Caída Libre 2.7.-Masa 2.8.-Fuerza 2.9.-Peso 2.10.-Primera Ley de Newton 2.11.-Segunda Ley De Newton 2.12.-Tercera Ley De Newton 3.1.-Tipos De Fuerza E Interacción 3.2.-Fuerza Gravitacional 3.3.-Energía Potencial 3.4.-Energía Cinética 3.5.-Energía Mecánica 3.6.-Trabajo 3.7.-Potencia

3.2.-Fuerza Gravitacional

Imagen
Todos los objetos son atraídos hacia la Tierra.  La fuerza ejercida por la Tierra sobre los objetos se denomina fuerza de gravedad.  La gravedad es una de las fuerzas fundamentales de la naturaleza.  Nadie realmente conoce exactamente porqué esta fuerza jala los objetos unos hacia los otros.  La masa de los objetos y la distancia entre ellos afectan la magnitud de la fuerza gravitacional.  A mayor masa de los objetos y a menor distancia entre ellos mayor es la intensidad de esa fuerza.  Masas gigantes pueden atraer con mayor fuerza, mientras que a mayor separación las fuerzas se debilitan. La gravedad de la tierra empuja los objetos hacia el centro de la tierra y a su magnitud se le llama peso del objeto.  Cuando un objeto está en caída libre experimenta una aceleración g que actúa hacia el centro de la Tierra.  Al aplicar la Segunda Ley de Newton ΣF=ma al objeto de masa m en caída libre, con a = g y ΣF = Fg, se obtiene: De este modo, el peso de un objeto, el cual se define com